
MPICH: A High-Performance Open Source MPI Library for
Leadership-class HPC Systems

Agenda
• Argonne Update – Yanfei Guo
• User presentations

• Jeff Hammond (NVIDIA)
• Vitali Morozov (Argonne)
• Wei-keng Liao (Northwestern University)
• Jiajun Huang (ANL/University of California, Riverside)
• Junchao Zhang (ANL)

• Wrap Up/Q&A

1

CASS Community BoF Days
June 12, 2024

MPICH: Status and Upcoming Releases
http://www.mpich.org

Ken Raffenetti, Yanfei Guo, Hui Zhou, Rajeev Thakur

Argonne National Laboratory

MPICH turns 31

Tianhe
MPI

MPICH

Intel
MPI

Sunway
MPI

Cray
MPICH

Microsoft
MPI

MVAPICH

MPE PETSc

MathWorks

HPCToolkit

TAU

Totalview

DDT

ADLB

ANSYS

ParaStation
MPI

FG-
MPI

RIKEN
MPI

The MPICH Project

• Funded by DOE for 31 years

• Has been a key influencer in the adoption of MPI

• First/most comprehensive implementation of every

MPI standard

• Allows supercomputing centers to not compromise on

what features they demand from vendors

• DOE R&D100 award in 2005 for MPICH

• DOE R&D100 award in 2019 for UCX (MPICH internal comm.

layer)

• MPICH and its derivatives are the world’s most widely used

MPI implementations

MPICH is not just a software
It’s an Ecosystem

MPICH Adoption in Exascale Machines

§ Aurora, ANL, USA (Intel MPI for Aurora)

§ Frontier, ORNL, USA (Cray MPICH)

§ El Capitan, LLNL, USA (Cray MPICH)

§ Binary compatibility for MPI implementations
– Started in 2013
– Explicit goal of maintaining ABI compatibility between multiple MPICH

derivatives
– Collaborators:

• MPICH (since v3.1, 2013)

• Intel MPI Library (since v5.0, 2014)

• Cray MPICH (starting v7.0, 2014)

• MVAPICH2 (starting v2.0, 2017)

• Parastation MPI (starting v5.1.7-1, 2017)

§ Open initiative: other MPI implementations are welcome to join
§ http://www.mpich.org/abi
§ MPI Standard ABI update in later slides…

MPICH ABI Compatibility Initiative

http://www.mpich.org/abi

MPICH Distribution Model

§ Source Code Distribution
– MPICH Website, Github

§ Binary Distribution through OS Distros
and Package Managers
– Redhat, CentOS, Debian, Ubuntu,

Homebrew (Mac)

§ Distribution through HPC Package
Managers
– Spack, OpenHPC, E4S

§ Distribution through Vendor Derivatives

MPICH Support in Spack

§ Spack package manager is widely used in HPC

§ Many MPICH configurations and features supported

§ Recently added options
– XPMEM variant

– Improved PMI/PMI2/PMIx variants

§ We want to hear from you
– Are there features missing?

– Are you unable to build/install on your system?

– Open an issue on Spack Github (https://github.com/spack/spack), use
subject “mpich: <…>” and tag @raffenet, @yfguo, @hzhou

MPICH Releases

§ MPICH now aims to follow a 12-month cycle for major releases (4.x)
– Minor bug fix releases for the current stable release happen every few months

– Preview releases for the next major release happen every few months

– Branching off when beta is released (feature freezed)

§ Current stable release is in the 4.2.x series
– mpich-4.2.1 released in March, mpich-4.2.2 release by end of June

§ Upcoming major release is in the 4.3.x series
– mpich-4.3.0b1 release targeted for November @ SC24

MPICH Layered Structure

10

OneAPI

HW
LO

C
JSO

N
-C

Abstract Device Interface (ADI)

MPI Interface
Application

GPU IPC

Yaksa
Datatype

Engine

MPL
(Portable

Funtionalities)

Machine-independent
Collectives

Derived Datatype Management Group Management

C/Fortran Bindings

CH4

Netmods

libfabric UCX

Architecture-specific
Collectives

Active Message
Fallback

GPU Support
Fallback

VCI Stream
Support

Shmmod

POSIX XPMEM GPU IPC

HIPCUDA

MPICH 4.2

§ Full support for MPI 4.1 specification

– mpi_memory_alloc_kinds info hint
– MPI_Request_get_status_{all,any,some}

– MPI_Remove_error_{class,code,string}

– MPI_{Comm,Session}_{attach,detach}_buffer

– MPI_BUFFER_AUTOMATIC

– Split type MPI_COMM_TYPE_RESOURCE_GUIDED

§ New experimental features
– MPI Thread communicator

– MPI datatype iov query

– Reduction operator MPIX_EQUAL

§ Enhanced GPU (esp. ZE) support

§ Unified PMI-{1,2,x} support

11

MPICH 4.3 Update

§ Support the new MPI ABI proposal --enable-mpi-abi

§ MPIX Async extension – for interoperable MPI progress
– Custom progress engine can include MPI progress

– MPI progress can advance custom asynchronous tasks

§ Stability and performance issues from Aurora

§ Misc fixes and enhancements – 122 merged pull requests so far

12

Support for MPI ABI

§ Standardized ABI by MPI Forum
– Portability across different MPI implementations.

– Simplify package and dependency management of HPC software

§ Try today by building MPICH with --enable-mpi-abi
– Existing MPICH ABI is offered in parallel

§ New compiler wrappers
– mpicc-abi, mpic++-abi

13

Jeff R. Hammond, Lisandro Dalcin, Erik Schnetter, Marc Pérache, Jean-Baptiste Besnard, Jed Brown, Gonzalo Brito Gadeschi, Joseph Schuchart, Simon Byrne, and Hui Zhou. MPI
Application Binary Interface Standardization. In Proceedings of EuroMPI 2023: the 30th European MPI Users’ Group Meeting (EUROMPI ’23), September 11–13, 2023, Bristol, United
Kingdom. ACM, New York, NY, USA. https://doi.org/10.1145/3615318.3615319

New Extension – MPIX_Op_create_x

14

§ The “old” op user function caters to a Fortran calling convention.

§ It assumes integer handles, which won’t work with Fortran.
§ It won’t work with any non-C/C++ user functions.
§ Current MPICH Fortran binding relies on non-standard, language-specific ABIs.

§ Proposed fix – add a context and a destructor to support binding proxy functions.

typedef void (MPI_User_function)(void *invec, void *inoutvec,
 int *len, MPI_Datatype *datatype);

void MPII_Op_set_fc(MPI_Op);
void MPII_Op_set_cxx(MPI_Op);

int MPIX_Op_create_x(MPIX_User_function_x *user_fn_x,
 MPIX_Destructor_function *destructor_fn,
 int commute, void *extra_state, MPI_Op *op);
Typedef void (MPIX_User_function_x)(void *invec, void *inoutvec,
 MPI_Count len, MPI_Datatype datatype,
 void *extra_state);
Typedef void (MPIX_Destructor_function)(void *extra_state);

New Extensions to Enable Inter-operable MPI Progress

15

int MPIX_Async_start(MPIX_Async_poll_function poll_fn,
 void *extra_state, MPIX_Stream stream);

enum {
 MPIX_ASYNC_PENDING = 0,
 MPIX_ASYNC_DONE = 1,
};

typedef struct MPIR_Async_thing *MPIX_Async_thing;
typedef int (MPIX_Async_poll_function)(MPIX_Async_thing);

void *MPIX_Async_get_state(MPIX_Async_thing async_thing);

void *MPIX_Async_spawn(MPIX_Async_thing async_thing,
 MPIX_Async_poll_function poll_fn,
 void *extra_state, MPIX_Stream stream);

§ Explicit MPI
progress

§ MPIX Async

§ Lightweight
request
completion
query

int MPIX_Stream_progress(MPIX_Stream stream);

bool MPIX_Request_is_complete(MPI_Request request);

Hui Zhou, Robert Latham, Ken Raffenetti, Yanfei Guo and Rajeev Thakur. MPI Progress For All. https://arxiv.org/pdf/2405.13807

The problem of “fancy” communications

§ Three Async Patterns
– No Await - e.g. light weight send

– Single Await – e.g. “strong progress”

– Multiple Await – e.g. fancy schemes require handshakes

§ Good computation/communication overlaps are
only possible with single await patterns.

§ It is more common to require fancy schemes for
communication performance due to increasingly
hybrid systems.

16

No Await

Single Await
Multiple Await

Computation Communication

Why we need explicit MPI progress

§ To achieve computation/communication
overlap, we require a progression scheme,
e.g. a progress thread.

§ Default global async thread does not work
– Waste resource when it is not needed

– Severely degrade performance due to thread
contentions

§ Solution – explicit MPI progress

– On-demand invocation

– Per-stream progress

17

Computation
thread

Progress
thread

Communication

Explicit MPI Progress
int MPIX_Stream_progress(MPIX_Stream stream);

Integrate custom progress hooks into MPI progress

§ Enable users to extend MPI by building custom communication algorithms

§ Integrate custom progress hooks –
– Allows for seamless MPI framework, minimize the effort of porting applications

– Avoid the complexity of building separate progression mechanisms

– Achieve equivalent performance to a native MPI implementation

18

int MPIX_Async_start(MPIX_Async_poll_function poll_fn,
 void *extra_state, MPIX_Stream stream);

Lightweight request completion query

§ Asynchronous workflow need to check dependency status

§ MPI_Test invokes MPI_Progress
– It contends with progress engine

– It does more than what is needed – filling status and freeing requests

§ MPIX_Request_is_complete is
– Lightweight (essentially an atomic query).

– No side effects.

19

bool MPIX_Request_is_complete(MPI_Request request);

Example: Allreduce Implementation outside of a MPI Library

§ Recursive doubling algorithm implemented in outside vs inside an MPI library.

§ “MyAllreduce” assumes MPI_IN_PLACE,
MPI_INT, MPI_SUM, and a power-of-2
communicator size.

§ It out-performs the native implementation
due to these assumptions (shortcuts).

20

21

Example: custom Allreduce

Complete & Cleanup

MPICH 4.3.0 Roadmap

•MPICH-4.3.0b1 in November 2024
– 4.3.x branch is created

• GA release in late 2024/early 2025

• Critical bug fixes are backported to 4.2.x

V4.2.0
V4.2.1

Jan ‘24 Mar ‘24

V4.3.0b1

Nov ‘24

V4.3.0
V4.2.2

Jun ‘24

Thank you!

• https://www.mpich.org

• Mailing list: discuss@mpich.org

• Issues and Pull requests: https://github.com/pmodels/mpich

• Weekly development call every Thursday at 9am (central): https://bit.ly/mpich-dev-call

https://www.mpich.org/
mailto:discuss@mpich.org
https://github.com/pmodels/mpich
https://bit.ly/mpich-dev-call

Using MPICH for Fun and Profit
Jeff Hammond
Principal Architect
HPC Software

1. MPI ABI Collaboration
2. MPI Fortran 2008 (VAPAA)
3. MPI-3 RMA (ARMCI-MPI)

Outline

MPI ABI

Goal: interoperability between implementations: build once, run many.

History:

2006: users want a common or standard ABI

2016: CEA wi4mpi project began

2021: Erik Schnetter creates MPI Trampoline

2021: ABI standardization effort begins

2023: I created Mukautuva, Hui adds ABI prototype to MPICH

MPI ABI Standardization

Python

PETSc, Rust

Julia

MPICH

Open MPI

wi4mpi, containers, MPC

Rust, containers

NVHPC SDK, Fortran

TAU, E4S

Julia, MPItrampoline

Open Access Paper
https://dl.acm.org/doi/10.1145/3615318.3615319

https://dl.acm.org/doi/10.1145/3615318.3615319

MPICH supports the proposed ABI, as defined in the reference header;
tested with mpi4py, etc.

MPI Forum still debating fine details of Fortran support.

As a side effect of the ABI effort, MPICH test suite is implementation-
agnostic and can be used to test Open MPI, e.g.

Current Status

https://github.com/mpiwg-abi/header_and_stub_library/

https://github.com/mpiwg-abi/header_and_stub_library/

VAPAA

What:

Standalone implementation of MPI Fortran support (MPI_F08).

Why:

Workaround Fortran compiler and MPI implementation issues to get all the features everywhere.

How:

Use MPI C API; translate subarrays to datatypes using CFI_cdesc_t.
Use MPICH’s MPIX_Type_iov instead of tedious and slow type introspection with MPI API.

When:

Common features are available. Features added based on user interest. Code generation will
achieve feature-completeness eventually.

VAPAA
In Finnish, Vapaa means "free", in the sense of "free-range chickens."

https://github.com/jeffhammond/vapaa

https://github.com/jeffhammond/vapaa

Accelerating Collective
Communication With Error-Bounded

Lossy Compression

Jiajun Huang
ANL & UC Riverside

Motivation

• MPI collective -> high-performance -> significant impact on various research fields.

• Exascale computing -> large-message MPI collectives -> Scalability challenges.
• VGG19 with 143 million parameters -> communication overhead of 83% [1].
• ResNet-50 with 25 million parameters -> communication overhead of 72% [1].

• Inter-node communications -> limited network bandwidth -> major bottleneck.

• How can we solve this bottleneck?

Motivation

• Designing large message algorithms: Decrease the overall communication volume.

• Allreduce: Ring: 𝟐∗(𝑵%𝟏)𝑵 ∗ 𝑫 vs Recursive-doubling: log𝑵 ∗ 𝑫 .

• Lossy compression: Significantly reduce the message size.

• To address this issue, prior research simply applies the off-the-shelf fix-rate
lossy compressors in the MPI collectives, leading to suboptimal performance,
limited generality, and unbounded errors [2].

Design of C-Coll

• C-Coll (Compression-accelerated Collectives): (IPDPS 24)

• Overlap the compression with communication using our developed pipelined SZx in our
collective computation framework.

• Reduce the compression overhead and mitigate error propagation by choosing
the appropriate timing of compression.

• Mathematical proof: To prove the error-bounded nature -> We perform an in-
depth mathematical analysis to derive the limited impact of error-bounded lossy
compression on error propagation.

Theoretical Analysis of Error Propagation for
C-Coll
• Collective data movement framework:

• The final error for each data point is within '𝒆,where '𝒆 is the compression error
bound.

• Collective computation framework:

• The final aggregated error of the most widely used sum operation falls within
the interval [− 𝟐

𝟑 𝒏'𝒆, 𝟐𝟑 𝒏'𝒆] with the probability of 95.44%.
• For example, if there are 100 nodes, and the error bound is 1E-3, the

aggregated error is bounded in the range of [−6.7E−3, 6.7E−3] with a
probability of 95.44%.

Performance of C-Coll

• Our C-Coll: a novel design for lossy-compression-integrated MPI
collectives that significantly improves performance with bounded
errors.

• C-Allreduce is up to 2.1X faster than MPI_Allreduce, while other CPRP2P
baselines demonstrate performance degradation.

• C-Scatter is up to 1.8X faster than MPI_Scatter.

• C-Bcast is up to 2.7X faster than MPI_Bcast.

Limitation of C-Coll

• C-Coll is optimized for host-centric collective communications. Thus, it
faces serious issues in GPU-centric communications [2].
• Expensive host-device data movements.
• Underutilized GPU devices.

CPR 121%
27%

MPI 273% 60%

DATAMOVE
46% 10%

REDUCTION
13% 3%

OTHERS
1% 0%

CPR
23%

MPI
17%

DATAMOVE
45%

REDUCTION
14%

OTHERS
1% Figure 1: Performance

breakdown of Allreduce
using CPRP2P and C-Coll
on 64 A100 GPUs:
CPRP2P's first percentage
is scaled to C-Coll's
runtime, and the second
is scaled to its own.

(a) C-Coll (b) CPRP2P

Design of gZCCL

• gZCCL (GPU-aware Compression-
Accelerated Collective
Communication Library): (ICS 24)

• Improve the scalability and
GPU utilization in the collective
computation framework.

• Overlap compression with our
multi-stream cuSZp in the
collective data movement
framework.

User Applications & Analysis (Image Stacking, etc.)

gZCCL Interface (gZ-Allreduce, gZ-Scatter)

Application

Interface

Collective Computation
Framework

Improve
Scalability

Improve
GPU

Utilization

Collective Data Movement
Framework

Overlap
Compression

Multi-stream
cuSZp

MPI P2P Compression Adapter

Abstract Device Interface Lossy Compression Library Library

Middleware

Algorithm
designing &
performance
optimizationgZ

C
C
L

Third-party Our designed key
modules in gZCCL

Detailed performance
optimization strategies

Figure 1: Design architecture (purple
box: newly contributed modules)

Evaluating the Collective Computation
Framework of gZCCL

Figure 2 demonstrates
that our recursive
doubling-based gZ-
Allreduce (ReDoub)
consistently performs
the best, achieving up
to 20.2X and 4.5X
speedups compared to
Cray MPI and NCCL
respectively, across
varying GPU counts.

Figure 2: Scalability evaluation of our gZ-
Allreduce with Cray MPI and NCCL in different
GPU counts.

 0

 5

 10

 15

 20

 25

 30

8 16 32 64 128 256 512

S
p

e
e

d
u

p
s

GPU Counts

Cray MPI
NCCL
gZ-Allreduce (Ring)
gZ-Allreduce (ReDoub)

Image Stacking Accuracy Analysis

Figure 4: Visualization of final stacking image.

(a) Cray MPI/NCCL (lossless) (b) gZCCL (2E-4)

gZCCL (Ring) (1E-4) reaches a great PSNR of 56.83 and an NRMSE of 1E-3.
gZCCL (ReDoub) (1E-4) demonstrates better data quality, achieving a PSNR of 57.80 and
an NRMSE of 1E-3.

Summary
• Performance: With our C-Coll and gZCCL, compression-

accelerated collectives have significantly higher performance
than the SOTA communication libraries on both CPU and GPU.

• Accuracy: With the accuracy-aware design, C-Coll and gZCCL
can demonstrate well-controlled accuracy through both
theoretical and experimental analysis.

• Future Work: We plan to further optimize compression-
accelerated collectives for FPGAs and AI accelerators.

References
1. A. M. Abdelmoniem, A. Elzanaty, M.-S. Alouini, and M. Canini, “An efficient statistical-based gradient compression technique for

distributed training systems,” 2021.
2. Jiajun Huang and Sheng Di and Xiaodong Yu and Yujia Zhai and Zhaorui Zhang and Jinyang Liu and Xiaoyi Lu and Ken

Raffenetti and Hui Zhou and Kai Zhao and Zizhong Chen and Franck Cappello and Yanfei Guo and Rajeev Thakur. 2023. An
Optimized Error-controlled MPI Collective Framework Integrated with Lossy Compression. arXiv:2304.03890 [cs.DC]

3. Yafan Huang, Sheng Di, Xiaodong Yu, Guanpeng Li, and Franck Cappello. 2023. CuSZp: An Ultra-fast GPU Error-bounded
Lossy Compression Framework with Optimized End-to-End Performance. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC '23).

Questions?

Thanks for your attention!

C-Coll Overall system design architecture

Figure 1: Design architecture (yellow box: applications; green
box: new contributed modules; purple box: third-party)

User Applications/Analysis (Image Stacking , etc.)

C-Coll Interface (C-Scatter, C-Allreduce, etc.)

Data Movement Framework Collective Comp. Framework

Compression Adapter

Error-bounded Lossy
Compression

Application

Interface

MPI P2P Middleware

Abstract Device Interface Library

Performance
Optimization

Reduce
Compression

Overhead
Mitigate Error
Propagation

Overlap
Compression and
Communication

Pipelined
SZxC

-C
ol
l

Image Stacking Performance Evaluation

Table 1: Image stacking performance analysis (The speedups
are based on Cray MPI. The last four columns are
performance breakdowns of our gZCCL).

Evaluating Our Collective Data Movement
Framework (gZCCL)

Figure 3 shows that our
gZ-Scatter outperforms
Cray MPI in all cases. As
the GPU count
increases, the speedup
of gZ-Scatter first
increases, peaking at
28.7X, and then
gradually decreases to
4.75X when the GPU
count reaches 512.

Figure 3: Scalability evaluation of our gZ-
Scatter with Cray MPI in different GPU counts.

 0

 5

 10

 15

 20

 25

 30

8 16 32 64 128 256 512

S
p

e
e

d
u

p
s

GPU Counts

Cray MPI
gZ-Scatter

Evaluating Our Collective Computation
Framework

Figure 3 shows that our
recursive doubling-
based gZ-Allreduce
(ReDoub) consistently
outperforms across all
data sizes, achieving up
to a speedup of 18.7X
compared to Cray MPI
and a 3.4X performance
improvement over
NCCL.

Figure 3: Performance evaluation of our gZ-
Allreduce with Cray MPI and NCCL in different
data sizes.

 0

 5

 10

 15

 20

 25

 30

50 100 150 200 250 300 350 400 450 500 550 600

S
p

e
e

d
u

p
s

Data Sizes (MB)

Cray MPI
NCCL
gZ-Allreduce (Ring)
gZ-Allreduce (ReDoub)

Evaluating Our Collective Data Movement
Framework

Figure 5 indicates that
our gZ-Scatter is able to
consistently outperform
Cray MPI across all data
sizes. The speedup of
gZ-Scatter enhances as
the data size increases,
achieving its maximum
20.2X at 600 MB.

Figure 5: Performance evaluation of our gZ-
Scatter with Cray MPI in different data sizes.

 0

 5

 10

 15

 20

50 100 150 200 250 300 350 400 450 500 550 600

S
p

e
e

d
u

p
s

Data Sizes (MB)

Cray MPI
gZ-Scatter

About me

• Two teams in Argonne:

• Yanfei Guo and Rajeev Thakur in the MPICH project, which is one of the most
widely-used MPI libraries.

• Sheng Di and Franck Cappello in the SZ project, which is the leading lossy
compressor framework.

Experiences with ROMIO
from a PnetCDF developer’s point of view

Wei-Keng Liao, ECE Department, Northwestern University

MPICH: A High-Performance Open Source MPI Library for
Leadership-class HPC Systems

2024 CASS Community BOF Days, June 12, 2024

PnetCDF

• A parallel I/O library for accessing NetCDF classic file format
• Relies on MPI-IO

• NetCDF classic file format
• NetCDF files are popularly used in climate research community
• Header and data sections
• Data objects: dimensions, variables, attributes

• PnetCDF APIs
• Metadata
• Read and write subarrays of variables
• Blocking and non-blocking reads and writes

MPI APIs used in PnetCDF

• MPI-IO
• File open, close, seek, sync, set view
• Collective and independent I/O APIs

• MPI communication
• Metadata consistency check: file header
• Mostly MPI_Allreduce, MPI_Bcast

• MPI derived datatypes to define fileview
• Commonly used data partitioning patterns
• Call to set fileview is collective, a problem for switch between independent

and collective modes

I/O request aggregation

• User intent for I/O
• Saving multiple variables in the file during data checkpointing.
• Safely store all variables, not individual variables, before returning to the computation phase.
• Such intent can be better realized by high-level libraries (through requestion aggregation

feature in PnetCDF, HDF5, and PIO)

• PnetCDF
• Use nonblocking APIs to post requests + a wait_all call later to flushed all out

• HDF5 multi-dataset APIs
• H5Dwrite_multi — allows a single call to write multiple variables

• PIO
• Two aggregation options: subset and box rearrangers

• Challenge for MPI-IO
• Aggregated amount can become very large. So is the metadata describing the requests.

Challenges — I/O hints

• cb_nodes
• Number of I/O aggregators (a subset of processes does I/O)
• Default: one per compute node (GPFS), same as number of OSTs (Lustre)

• cb_buffer_size (default: 16 MiB)
• striping_factor

• Too small yields poor performance, too large increases interference from other users
• striping_unit

• Large, contiguous requests prefer large striping size
• Data sieving (romio_ds_write, romio_ds_read, romio_cb_ds_threshold)

• I/O aggregators check holes in its file domain to determine whether data sieving is
necessary, and then read-modify-write

Challenges — future ROMIO improvement

• Memory footprints
• Fileview and user buffer datatype are flattened into offset-length pairs
• Internal buffers allocated for storing these pairs can become significant

• Excessive number of memcpy calls
• Communication phase in collective I/O packs data into contiguous buffers

before sending
• For large number of offset-length pairs, memcpy calls become expensive

• Communication in the two-phase I/O
• MPI_Isend vs. MPI_Issend — MPI_Issend can prevent message queues from

being overwhelmed

MPI on Aurora and Sunspot:
Examples and Best Practices

Vitali Morozov (morozov@anl.gov)
Performance Engineering Team, Argonne Leadership Computing Facility
Consortium for the Advancement of Scientific Software
MPICH Birds of a Feather
June 12, 2024

Argonne Leadership Computing Facility2

How to Get Started

Key points: module restore, gcc-11, agama driver, oneapi, mpich, mpicc, mpic++, mpif90

Argonne Leadership Computing Facility3

Do Sanity Check: Aurora and Sunspot are early machines

Key points: make your own tests, identify critical dependencies, test them after each update

Argonne Leadership Computing Facility4

Know the topology of the node: Sockets and Cores

Key points:

 Core changes first, 0 to 51

 Socket changes next, 0 to 1

 Thread changes last, 0 to 1

q Dual socket with 52 physical Cores on each socket
HyperThreading makes each Core as 2 CPUs

q MPI numerates CPUs, not Cores
CPU0 is Socket0, Core0, Thread0
CPU1 is Socket0, Core1, Thread0
….
CPU51 is Socket0, Core51, Thread0
CPU52 is Socket1, Core0, Thread0
CPU53 is Socket1, Core1, Thread0
…
CPU103 is Socket1, Core51, Thread0
CPU104 is Socket0, Core0, Thread1
CPU105 is Socket0, Core1, Thread1
…
CPU155 is Socket0, Core51, Thread1
CPU156 is Socket1, Core0, Thread1
CPU157 is Socket1, Core1, Thread1
…
CPU206 is Socket1, Core50, Thread1
CPU207 is Socket1, Core51, Thread1

Argonne Leadership Computing Facility5

Use explicit placement and verbose

Key points:

 Check the placement

 Do not rely on defaults

mpiexec --np 8 -ppn 8 --cpu-bind verbose,list:0:1:2:3:52:53:54:55 <exe_file>

ü Mask represents cores a task is assigned to. Cores are numerated from 0 to 207

ü Mask is hexadecimal, numerating cores right-to-left

ü One mask digit represents 4 cores, from 0000b (no cores) to F = 1111b (all 4 cores)

ü Mask 0x00000001 is 1b, represents Core0

ü Mask 0x00000002 is 10b, represents Core1

ü Obviously, Mask 0x00000003 is 11b, represents Core0 and Core1

ü 0x0 means 0x00000000 no cores from 32 core pool. 0xFFFFFFFF is all 32 cores

ü Example: 0x105,,0x5 means: cores 101b from first 32 core pool, 32 cores empty,

 cores 1b 0000b 0101b from third pool or Cores 0, 2, 65, 67, 73

Thanks Taru Doodi, Intel!

Argonne Leadership Computing Facility6

Know the NIC assignments

Key points: Distribute processes across cores and sockets to maximize hardware utilization

ü 4 NICs on a socket, 8 NICs on a node

ü Round-robin MPI process to NIC assignment on a socket
ü MPI process does not use multiple NICs*

 Link bandwidth might be a limitation

ü MPI processes may share the NICs
 Running 5 or more processes per socket

ü Sockets are connected by UPI bus – might be a limitation
ü Cores are attached to a Network-on-a-chip – might be a limitation

* Default, may be changed in experimental builds

Argonne Leadership Computing Facility7

Know the memory domains – Flat mode

Key points: Meet the system config with your application config

ü numactl -H before mpiexec

ü 512GB DDR per socket

ü 64GB HBM nodes

ü NUMA domains defined by mode

ü DDR nodes have cores

ü numactl -m 2-3 ./app

ü memkind
#include <hbwmalloc.h>
void *hbwmalloc(size_t);
void hbw_free(void *ptr);
-I/home/morozov/include
-L/home/morozov/lib -lmemkind

Argonne Leadership Computing Facility8

Know the memory domains – Flat mode

Key points: Meet the system config with your application config

ü numactl -H before mpiexec

ü 512GB DDR per socket

ü 64GB HBM nodes

ü NUMA domains defined by mode

ü DDR nodes have cores

ü numactl -m 2-3 ./app

ü memkind

Argonne Leadership Computing Facility9

ü Socket0 has GPU0, GPU1, and GPU2

ü Socket1 has GPU3, GPU4, and GPU5

ü ZE_AFFINITY_MASK variable defines visibility

ü Visibility is defined ”per MPI process”

 Different processes may define different masks

 Use PALS_RANKID, PALS_LOCAL_RANKID with getenv call

 Use MPI_COMM_TYPE_SHARED for comm_split for MPI compliance

ü ZE_AFFINITY_MASK=4 # processes uses 1 device, GPU4

ü ZE_AFFINITY_MASK=0,3 # 2 devices, 0 and 3, different sockets

ü ZE_AFFINITY_MASK=0.0,1.0,2.0,3.0,4.0,5.0å

Know the GPU mode and numeration

Key point: Use explicit binding of GPUs to tasks

Argonne Leadership Computing Facility10

ü PALS-defined variables – Cray’s Parallel Application Launch service provided

 PALS_RANKID – job process ID, PALS_LOCAL_RANKID – node process ID

ü MPI standard for shared memory region

 MPI_COMM_TYPE_SHARED predefined

Local Environment

Key point: Use local environment setup constructs to identify itself

MPI_Comm_split_type(MPI_COMM_WORLD, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL, &shmcomm);

MPI_Comm_size(shmcomm, &shmsize); // Number of ranks per node

MPI_Comm_rank(shmcomm, &shmrank); // My ID in a node, might be similar to PALS_LOCAL_RANKID

char *ptr = getenv("PALS_LOCAL_RANKID");

 if (ptr != NULL) local_id = atoi(ptr);

Argonne Leadership Computing Facility11

OMP example: Assigning a device
#include <mpi.h>

#include <omp.h>

#include <stdio.h>

int main(int argc, char * argv[]) {

 int rank, nsize, res_len, shmrank, shmsize, numdevices, deviceid;

 char name[MPI_MAX_PROCESSOR_NAME]; MPI_Comm shmcomm;

 MPI_Init(&argc, &argv);

 MPI_Comm_size(MPI_COMM_WORLD, &nsize);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank) ;

 MPI_Get_processor_name(&name[0], &res_len);

 MPI_Comm_split_type(MPI_COMM_WORLD, MPI_COMM_TYPE_SHARED,

 0, MPI_INFO_NULL, &shmcomm);

 MPI_Comm_size(shmcomm, &shmsize); // Ranks per node

 MPI_Comm_rank(shmcomm, &shmrank); // Local rank ID

 numdevices = omp_get_num_devices();

 deviceid = shmrank % numdevices;

 omp_set_default_device(deviceid);

 printf("Hello from rank %3d of %4d, I am rank %3d of node ranks

 %3d, I know %2d devices, my device id %2d: node %s\n",

 rank, nsize, shmrank, shmsize, numdevices, deviceid, name);

 MPI_Finalize();

 return 0;

}

mpicc -O2 -g -fiopenmp -fopenmp-targets=spir64 -c hello.c -o hello.o

mpicc -O2 -g -fiopenmp -fopenmp-targets=spir64 hello.o -o hello

module restore

module list

echo Working directory is $PBS_O_WORKDIR

cd $PBS_O_WORKDIR

echo Jobid: $PBS_JOBID

echo Running on host `hostname`

echo Running on nodes `cat $PBS_NODEFILE`

NNODES=`wc -l < $PBS_NODEFILE`

NRANKS=4 # Number of MPI ranks per node

NTOTRANKS=$((NNODES * NRANKS))

echo "NUM_OF_NODES=${NNODES} TOTAL_NUM_RANKS=${NTOTRANKS}

RANKS_PER_NODE=${NRANKS}

export LIBOMPTARGET_DEVICES=SUBDEVICE # DEVICE | SUBDEVICE

export LIBOMPTARGET_PLUGIN=LEVEL0

mpiexec --np ${NTOTRANKS} -ppn ${NRANKS} \

 --cpu-bind=verbose,list:0:34:52:86 ./hello

Argonne Leadership Computing Facility12

Example: MPI process to GPU binding

Key point:
 Each task should only see the device it uses

Argonne Leadership Computing Facility13

MPI process to GPU binding: to be implemented…

Status as of Aug 30, 2023: Partially implemented
 We will update users when this functionality is available

mpiexec --rankfile <file.txt> -ppn N --cpu-bind verbose,list:0:26:52:78 … ./set_ze_affinity. sh <exe>

or

export PALS_RANKFILE=<file.txt>

file.txt: examples

0 0 0 0 0 0 0,2 0 0 0 0.0,0.1
1 0 5 1 0 5 1,3 1 0 5 1.0
2 1 12 2 1 12 2 2 1 12 2.0,3.1
3 1 78 3 1 78 5 3 1 78 2.1
cycle cycle cycle

Format:

Each line corresponds to one rank
Ranks are sorted in order
The first column - rank number
The second column – host index
The third column – CPUs, the rank should be bound to
The fourth column – GPUs, the rank should be bound to
Cycle – the pattern is replicated to the rest of the hosts

Argonne Leadership Computing Facility14

GPU-aware MPI by default

Key point:
 Make the right decision when to use it

ü MPIR_CVAR_ENABLE_GPU=1 # put 0 if you do not need it

ü MPI message can be located in device memory

ü MPI uses XeLink if necessary

ü MPI uses optimized protocols

o When implemented and expected to be beneficial

ü Has a price associated with it

o MPI_Init takes longer

ü Latency for DDR-located messages might by higher

Argonne Leadership Computing Facility15

Sunspot: Significant intranode improvements

Key point:
 Use fine tuning with the CVARs when needed

ü Milestones 16, 18 NRE report from Compiler working group

ü Level Zero is used internally for accessing device memory

ü XeLinks are used internally for GPU-GPU transfers

ü CVAR variables for extra tuning
 $ROOT/share/doc/mpich/tuning_parameters.md

Ø IPC mechanisms for USM device memory

Ø Fast memory copying control

Ø Pipelining for intern-node communications

Ø The use of compute and link engines

Ø Others

Argonne Leadership Computing Facility16

Benchmarks: GPU to GPU on a node

Key points:
 About 2 microsecond cost for UPI
 Improves as we speak

Argonne Leadership Computing Facility17

Welcome to sunspot.alcf.anl.gov
Working directory is /home/morozov/OSU_MPI_IntelZE-runs/OSU_pt2pt_1n_bw.Z
Jobid: 4394.amn-0001
Running on host x1921c0s6b0n0

Intra-node: Core 0-25 device 0 -> Core 26-33 device 1
Rank 0/2, device_id = 0/6
Rank 1/2, device_id = 1/6
OSU MPI-ZE Bandwidth Test v5.6.2
Send Buffer on DEVICE (D) and Receive Buffer on DEVICE (D)
Size Bandwidth (MB/s)
1024 49.83
2048 174.80
4096 343.54
8192 678.89
16384 1345.91
32768 2505.71
65536 4465.87
131072 7310.41
262144 10664.40
524288 13929.75
1048576 16370.99
2097152 17954.20
4194304 18874.38
8388608 19370.02
16777216 19436.62
33554432 19273.23

Benchmarks: GPU to GPU on a node

Key points:
 About 20 GB/s/link
 All Links can be used

Argonne Leadership Computing Facility18

Benchmarks: Aggregate offnode bandwidth

Key points:
 One NIC can deliver about 22 BG/s
 Use more ranks to use more NICs
 4MB message size
 Work in progress

Argonne Leadership Computing Facility19

Benchmarks: Allreduce Latency from GPU

Key points:
 1 MPI process per GPU
 Many optimization options
 Topology-aware
 Improves as we go

Argonne Leadership Computing Facility20

Aurora-Sunspot Bob Walkup’s MPI profiler

Key points:
 Familiar tools are ported

Link: -L/home/morozov/mpitrace/hpmprof -lhpmprof_c \
 -L/home/morozov/binutils-2.39/lib -lbfd -liberty \
 -L/home/morozov/zlib-1.2.13/lib -lz

Data for MPI rank 0 of 192:
Times and statistics from MPI_Init() to MPI_Finalize().

MPI Routine #calls avg. bytes time(sec)

MPI_Comm_rank 10 0.0 0.000
MPI_Comm_size 8 0.0 0.000
MPI_Isend 1092 16424526.9 0.025
MPI_Recv 52 2508532.2 0.095
MPI_Irecv 1040 17119641.6 0.027
MPI_Wait 1456 0.0 10.786
MPI_Waitall 312 0.0 7.634
MPI_Barrier 79 0.0 2.338
MPI_Allreduce 87 373.9 5.652

total communication time = 26.556 seconds.
total elapsed time = 150.842 seconds.
user cpu time = 140.157 seconds.
system time = 11.229 seconds.
max resident set size = 1739.879 MBytes.

Argonne Leadership Computing Facility21

ü If you are happy with the results, continue scaling to bigger hardware

ü Socket: 52 cores, 3 devices, 4 NICs, Memory domains – complete system
Ø Maximize resource utilization, balance, minimize sharing

ü Mapping: ranks to cores, devices to ranks

Ø mpiexec …-ppn 3 --cpu-bind verbose,list:0-15:16-31:32-51 (1 NIC is unused)
Ø mpiexec …-ppn 12 --cpu-bind list:4:8:12:32:36:40:48:50:52

Ø ZE_AFFINITY_MASK different for each rank
if ((PALS_LOCAL_RANKID==3)); then

 export ZE_AFFINITY_MASK=3

fi

ü Always make a sanity check

Final checklist

Key point:
 Search for info: slack, support@alcf.anl.gov

THE COLLABORATION BETWEEN PETSC AND MPICH

e r h t jh tyh y

Junchao Zhang
(jczhang@anl.gov)

Mathematics and Computer Science Division
Argonne National Laboratory

June. 12, 2024

MPICH BoF at Consortium for the Advancement of Scientific Software (CASS) Community BoF Days, June 11-13, 2024, Virtual

mailto:jczhang@anl.gov

PETSc and MPICH under CASS

2

CASS

COLABS CORSA PESO S4PST STEP SWAS FASTMath RAPIDS

PETScMPICH

OASIS

MPICH and PETSc at Argonne

§ MPICH: the most widely used MPI implementation and is the implementation of
choice for the world's fastest machines

§ PETSc: a scalable numerical library for linear and non-linear solvers and more
– Has C, Fortran, Python, Rust bindings
– Runs on Linux, Mac and Windows
– Widely used in academia and industry in dozens of disciplines

3

Outline

§ The PETSc/MPICH collaboration in the MPI-1.0~2.0 era and PETSc’s adoption
of new MPI features

§ The PETSc/MPICH collaboration in the MPI-2.0~4.0 era and PETSc’s adoption
of new MPI features

§ The PETSc/MPICH collaboration in recent years
§ Conclusion

4

MPI-1.0~2.0 era

5

1994

2008

1997

• MPICH was originally developed
during the MPI standards
process starting in 1992 to
provide feedback to the MPI
Forum on implementation and
usability issues.

• Bill Gropp was deeply involved in
both projects

1996

PETSc’s most successful use of MPI-1.0 features

§ MPI communicators and attributes
– PETSc inner communicator to separate PETSc library messages from callers
– Sub-communicator in multigrid solvers

§ Persistent MPI_Send/Recv
– Repeated, split-phased sparse neighborhood communication in Krylov solvers

§ Various MPI collectives
– MPI_Allreduce() for VecNorm(); two-sided discovery from one-sided

§ MPI datatypes
– Note derived data types are less used, since we mainly deal with sparse data

6

“MPI changed everything, by providing an extensive API for message passing and
collectives that allowed portable distributed memory scientific libraries to no longer
need to be programmed to the lowest common denominator of message passing
systems. … The MPI communicator concept made distributed parallel scientific
libraries practical in two ways, it eliminated the tag collision problem and (by the
use of subcommunicators) allowed applications to simply utilize scientific libraries
to perform needed computations on subsets of processes, for example with ‘divide
and conquer’ algorithms.”

-- Barry Smith
https://www.hpcwire.com/2017/05/01/mpi-25-years-old/

7

PETSc’s adoption of new MPI-2.0 features

 MPI-IO
✅ MPI Fortran-90 binding
❌ MPI one-sided (RMA) & dynamic process

– Not even tried in the next decade
❌ MPI + multithreading

– PETSc added support for both OpenMP and Pthreads and found the code
was never faster than pure MPI and cumbersome to use hence we have
removed it

8

“The PETSc team has no problems with proposals to replace the pure MPI programming
model with a different programming model but only with an alternative that is
demonstrably better, …

At least for the PETSc package, the concept of being thread-safe is not simple. It has major
ramifications about its performance and how it would be used; it is not a simple matter of
throwing a few locks around and then everything is honky-dory.”

-- Barry Smith
https://www.mcs.anl.gov/petsc/petsc-3.15/docs/miscellaneous/threads.html

9

MPI-2.0~4.0 era
§ As both projects became mature, the close collaboration was almost lost
§ PETSc occasionally tried new features introduced in the MPI standard

– MPI-3.0 process-shared memory to improve intra-node communication
• Not easier than two-sided for sparse-neighborhood & no obvious performance benefit

– MPI-3.0 revised one-sided in PetscSF implementation
• -sf_type window -sf_window_flavor <create|dynamic| allocate> -
sf_window_sync <fence|active|lock>

• Yet to show an advantage over two-sided
– MPI (persistent) neighborhood collectives

• -sf_type neighbor –sf_neighbor_persistent <bool>
– MPI_Iallreduce() in pipelined CG solver (-ksp_type pipecg)
– MPI_Ibarrier/Iprobe() with –build_twosided ibarrier*

• The ibarrer alg. [hoefler2010] performs better at large scale than the allreduce alg.
• Less reliable than allreduce, frequently run into errors with Intel MPI

– MPI large count (--with-64-bit-indices)

10

PETSc developers’ contribution to the MPI community
 -- MPI for Python and Rust maintainers

11

mpi4py
rsmpi

The enhanced PETSc/MPICH collaboration in
recent years

§ PETSc CI job coverage with MPICH on GPUs
– PETSc CI helped MPICH identify its excessive GPU memory usage
– MPICH helped PETSc discovery a serious GPU stream sync bug

§ PETSc is experimenting with the MPICH GPU stream extension
– -sf_use_gpu_aware_mpi <bool> (not steam-aware)
– -sf_use_stream_aware_mpi <bool> (experimental)

§ PETSc is experimenting with the MPI-5.0 ABI implemented in MPICH
– PETSc users might mess up the PETSc build time MPI (e.g., OpenMPI) with

user code build time MPI (e.g., MPICH)
– It is helpful to unify the MPI ABI

§ PETSc inspired the MPIX_THREADCOMM extension in MPICH
12

The “PETSc + OpenMP” dilemma

§ PETSc doesn’t support OpenMP because of the complexity and bad
performance

§ Some OpenMP-only codes want to call PETSc to leverage its tons of solvers
– Also want PETSc to be run in parallel to make use of the CPU cores

13

The MPICH MPIX_Threadcomm Solution
Mat A;

Vec x, b;

int nthreads = 4;

MPI_Comm comm;

PetscInitialize(&argc, &argv, NULL, NULL);

// user code building A, x, b etc

…

MPIX_Threadcomm_init(MPI_COMM_WORLD, nthreads, &comm);

#pragma omp parallel num_threads(nthreads)

{ Mat A2;

 Vec x2, b2;

 KSP ksp;

 MPIX_Threadcomm_start(comm); // comm’s size is 4

 MatCreate(comm, &A2);

 MatCreateVecs(A2, &x2, &b2);

 // Assemble A2, b2 from the shared A, b

 KSPSolve(ksp, b2, x2);

 // Transfer the solution x2 to x

 MatDestroy(&A2);

 MPIX_Threadcomm_finish(comm)

 }

MPIX_Threadcomm_free(&comm);

PetscFinalize();
14

• Run the test as a regular OMP code:
OMP_NUM_THREADS=8 ./test –args

• User’s sequential code (might use OpenMP)
• PETSc is initialized on a single process
• Build sequential petsc objects such as matrices and vectors

• Build parallel petsc objects on the threadcomm comm
• Somehow transfer data from the shared sequential A, b to

parallel A2, b2
• Other parts of the petsc code work as if they were run by

mpiexec –n 4 ./test
• Caveats: petsc needs to be thread safe, e.g., in logging
• Future work: provide a new preconditioner type PCOMP to

wrap around this stuff

Summary: MPI & MPICH’s use in PETSc

§ In 2024, PETSc can still build with MPI-2.1 without (performance) issues!!
§ PETSc users do not need MPI if they only use PETSc sequentially

– ./configure –-with-mpi=0
– petsc will use its fake single-process MPI (mpiuni) impl. to provide MPI APIs
– Maybe MPICH could take it over as others also like it (?)

§ MPICH is recommended by PETSc for users needing valgrind
§ The latest MPICH can be downloaded and installed by PETSc (many users use

that!)
– ./configure –-with-cc=gcc –-with-cxx=g++ --with-cuda

--download-mpich –download-mpich-device=<ch3:nemsis|..>

§ PETSc has 8000+ tests and 70+ CI jobs with many using MPICH for testing
15

Conclusion

§ PETSc is an excellent testbed and a real world inspiring example for MPI and
MPICH research

§ The closer the two projects collaborate, the better they can serve their users

16

	2024-06-12-MPICH-BoF
	hammond
	huang
	liao
	morozov
	zhang

