
CASS Community 
BOF Days

The Consortium for the Advancement of 
Scientific Software

June 11 – 13, 2024

https://cass.community/bofs

⬅ Connect with CASS
h-ps://2nyurl.com/2024-CASS-BOFS

https://cass.community/bofs
https://tinyurl.com/2024-CASS-BOFS


Announcing CASS
The Consortium for the Advancement of Scientific Software

CASS Basics
• A newly-formed organiza2on 
• Sponsored by DOE Office of 

Advanced Scien2fic Compu2ng 
Research (ASCR)

• Established by DOE SoNware 
Stewardship Organiza2ons (SSOs)

CASS Goals
• Forum for SSO collabora2on and 

coordina2on

• Bigger than the sum of its parts

• Vehicle for advancing the scien2fic 
soNware ecosystem

CASS Status
• Defining governance structure

• Establishing community awareness

• Building a team of teams

• Collabora2ng on outreach

Software Stewardship Organization (SSO) Basics
• Each SSO represents a specific software ecosystem concern

• Product SSOs: Programming systems, performance tools, 
math packages, data/viz packages

• Portfolio SSO: Curating & delivering software stack to the 
community

• Community SSOs:  Workforce, partnerships

Engage with CASS

• Par$cipate in June 11-13 CASS Community BOF Days:
h>ps://cass.community/bofs

• Visit h>ps://cass.community

https://cass.community/bofs
https://cass.community/


8 So%ware Stewardship Organiza4ons (SSOs)
DOE Office of Advanced Scien$fic Compu$ng Research (ASCR) Post-ECP Projects

COLABS
Training, workforce 
development, and 
building the RSE 

community

CORSA
Partnering with 

foundations to provide 
sustainable pathways for 

scientific software

FASTMATH
Stewardship, 

advancement, and 
integra>on for math and 

ML/AI packages

PESO
Stewarding, evolving and 

integra>ng a cohesive 
ecosystem for DOE 

soFware

RAPIDS
Stewardship, 

advancement, and 
integra>on for data and 

viz packages

S4PST
Stewardship, 

advancement and 
engagement for 

programming systems

STEP
Stewardship, 

advancement of soFware 
tools for understanding 

performance and behavior

SWAS
Stewardship and project 

support for scien>fic 
workflow soFware and its 

community



Exploring the Landscape of AI and ML in 
Compiler Development: Pros and Cons
Speakers
Mircea Trofin, Google
William Moses, UIUC
EJ Park, Qualcomm
Aiden Grossman, UC Davis
Sunita Chandrasekaran, U Delaware
Gokcen Kestor, PNNL

Moderator:
Johannes Doerfert, LLNL 

June 11, 2024 



Mircea Trofin, Google

Value statements / trade-off analysis are in a context

My context: LLVM, production, data center binaries

How much can we rely on models?

How much can we rely on an advice from a stranger?
(depends… e.g. on consequences; maybe also track record?)

Compiler construction & ML:

+ Cleaner separation of correctness vs policy
+ Stronger feedback signal for optimizations
+ Found unexpected “holes” / blind spots (in LLVM)

AI: Reviewing vs authoring

- different skills

- can one deeply learn something (“grok”) without authoring?



William Moses, Optimization Science Lab @ UIUC

How do we represent and transform programs to enable anyone to leverage the 
latest in HPC/ML/etc?

>100x speedup!

Prior:
5 days (cluster)
Enzyme-Based:
1 hour (laptop)

Efficient Differentiation (Training) 
of Arbitrary Programs [1] [2] [3]

Synthesize GPU & parallel programs 
with Polygeist/MLIR [4] [5] [6]

Use ML to discover the
fastest programs [7] [8] [9]

[1] Instead of Rewriting Foreign Code for Machine Learning, Automatically Synthesize Fast Gradients. NeurIPS ’20.
[2] Reverse-mode automatic differentiation and optimization of GPU kernels via Enzyme. SC'21
[3] Scalable Automatic Differentiation of Multiple Parallel Paradigms through Compiler Augmentation. SC'22
[4] High-Performance GPU-to-CPU Transpilation and Optimization via High-Level Parallel Constructs. PPoPP'23
[5] Polygeist: Raising C to Polyhedral MLIR. PACT'21
[6] Retargeting and Respecializing GPU Workloads for Performance Portability. CGO'24
[7] AutoPhase: Compiler Phase-Ordering for HLS with Deep Reinforcement Learning. MLSys '20.
[8] ComPile: A Large IR Dataset from Production Sources. arxiv'24
[9] Enabling Transformers to Understand Low-Level Programs. HPEC'22

Currently taking students!

https://proceedings.neurips.cc/paper_files/paper/2020/file/9332c513ef44b682e9347822c2e457ac-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/9332c513ef44b682e9347822c2e457ac-Paper.pdf
https://dl.acm.org/doi/abs/10.1145/3458817.3476165
https://dl.acm.org/doi/abs/10.1145/3458817.3476165
https://ieeexplore.ieee.org/abstract/document/10046093/
https://ieeexplore.ieee.org/abstract/document/10046093/
https://dl.acm.org/doi/abs/10.1145/3572848.3577475
https://dl.acm.org/doi/abs/10.1145/3572848.3577475
https://ieeexplore.ieee.org/abstract/document/9563011/
https://ieeexplore.ieee.org/abstract/document/9563011/
https://ieeexplore.ieee.org/document/10444828
https://ieeexplore.ieee.org/abstract/document/8735549
https://ieeexplore.ieee.org/abstract/document/8735549
https://arxiv.org/pdf/2309.15432.pdf
https://arxiv.org/pdf/2309.15432.pdf
https://c.wsmoses.com/papers/hpectransformers.pdf


Why is AI so successful now (and not 20 years ago)?

How do we emulate that success in program optimization?

…and push even further?



“Good Old Fashioned AI” aka Symbolic AI

Can we build AI by wri0ng a sufficiently expressive 
set of rules?

Analyzing language by modelling stages 
of language (tokenizing, features, etc)

Parse Tree

SophisNcated image filters

Canny Edge Detec0on (1986)



“Good Old Fashioned AI” aka Symbolic AI

Can we build AI by writing a sufficiently expressive 
set of rules?

Analyzing language by modelling stages 
of language (tokenizing, features, etc)

Parse Tree

SophisNcated image filters

Canny Edge Detec0on (1986)



“Good Old Fashioned AI” aka Symbolic AI

Can we build AI by wri0ng a sufficiently expressive 
set of rules?

Analyzing language by modelling stages 
of language (tokenizing, features, etc)

Parse Tree

SophisNcated image filters

Canny Edge Detec0on (1986)



GOFAI lost to current “gen-AI” wave because running more unstructured
training cycles is cheaper than writing more rules.

Compiler researchers (myself included) are correctly embracing these 
techniques but….

limited by structured data & correctness guarantees (not 97% accuracy)

How do we combine the best of neural and symbolic reasoning:
- transformations
- program representation
- data



EJ Park, Qualcomm

Let ML improve (ML) Compilers:

- Multiple Objectives: Need of faster and smaller code on small devices is becoming 
increasingly important. (e.g., Inferences on devices)

- Adaptive Learning/Transfer Learning: ML models that can adapt to new SW/HW 
changes instead of collecting new training data and retraining.

Challenges:

- Human readability becomes more challenging as ML models become more complex 
and elaborated.

- Integrating ML models into diverse environments remains challenging.
- e.g., using PyTorch ML model within compilers written in C++



Aiden Grossman, UC Davis

Datasets:

Cost Modeling:

LLMs for IR:

● 1B+ BBs from ComPile
● SOA results on znver2

https://github.com/google/gematria

https://github.com/llvm-ml/llvm-ir-dataset-utils https://huggingface.co/datasets/llvm-ml/ComPile

https://github.com/google/gematria
https://github.com/llvm-ml/llvm-ir-dataset-utils
https://huggingface.co/datasets/llvm-ml/ComPile


Sunita Chandrasekaran, U Delaware
Building validation and verification testsuites using LLMs

● Automate the process of manual tests generation as the specifications evolve 
● Currently focusing on directive-based programming model 
● Used several prompt-engineering techniques, parameter-efficient fine-tuning 

(peft) with low rank adaptation (lora), i.e. freezing model weights and training 
small additional layers 

● Generated 35 testsuites, over 5000 tests
○ Deepseek’s Deepseek-coder-33b-instruct, Meta’s Codellama-34b-Instruct, Phind’s Codellama-

34b-v2, GPT-3.5-Turbo and GPT-4-Turbo and fine-tuned all except the last one

Open Questions

● Metric for accuracy of test beyond human analysis?
● Building a larger and more relevant dataset? 
● Pre-training an open-source LLMs with corpus of relevant data? 
● Train with reinforcement learning using a reward function?

Pre-print: https://arxiv.org/abs/2310.04963 (Accepted to FGCS journal, 2024)
GitHub: https://github.com/chrismun/LLM4VV

https://arxiv.org/abs/2310.04963
https://github.com/chrismun/LLM4VV


Gokcen Kestor, PNNL
The next Big Thing:

● Most ML training/inference is based on dense model/data structures/computing.
● Cost of dense attention grows quadratically with the query length, it is essential to embrace sparse methods, including graph-

neural networks and recommender systems
● Current ML systems lack of expressing sparse ML models, only a few handwritten sparse operations. 
● We need compiler infrastructures to support the increasing adaptation of sparse methods in ML framework

Compilers for sparse AI models

● Compilers take advantage of sparsity and support some key functionalities such as tile and fuse sparse kernels, 
● Some recent efforts to develop compilers and libraries for sparse AI computation (TACO, PyTorch.sparse, cuSparse, etc.)

The COMET compiler support efficient generation of spare computation kernels: https://github.com/pnnl/COMET

● Multiple sparse storage formats (COO, BCSR, …) and code generation for combination of those - users do not need to specify the 
data structures of computed tensors

● Graph oriented operators (semiring, masking, etc.)
● Sparse optimizations (mixed mode kernel fusion, masking, etc.)

Questions:

● What are the challenges to support for distributed computation as well as support for targeting domain-specific hardware?
● How do we ensure that code can adapt to different architectures? GenAI?
● How do we integrate domain-knowledge in the compiler code generation (pragmas? Intermediate artifacts? directives?)

https://github.com/pnnl/COMET


Panel — Please unmute & ask questions!


