
CASS Community
BOF Days

The Consortium for the Advancement of
Scientific Software

June 11 – 13, 2024

https://cass.community/bofs

 Connect with CASS
https://tinyurl.com/2024-CASS-BOFS

https://cass.community/bofs
https://tinyurl.com/2024-CASS-BOFS

Announcing CASS
The Consortium for the Advancement of Scientific Software

CASS Basics
• A newly-formed organization

• Sponsored by DOE Office of
Advanced Scientific Computing
Research (ASCR)

• Established by DOE Software
Stewardship Organizations (SSOs)

CASS Goals
• Forum for SSO collaboration and

coordination

• Bigger than the sum of its parts

• Vehicle for advancing the scientific
software ecosystem

CASS Status
• Defining governance structure

• Establishing community awareness

• Building a team of teams

• Collaborating on outreach

Software Stewardship Organization (SSO) Basics

• Each SSO represents a specific software ecosystem concern

• Product SSOs: Programming systems, performance tools,
 math packages, data/viz packages

• Portfolio SSO: Curating & delivering software stack to the
 community

• Community SSOs: Workforce, partnerships

Engage with CASS

• Participate in June 11-13 CASS Community BOF Days:
https://cass.community/bofs

• Visit https://cass.community

https://cass.community/bofs
https://cass.community/

8 Software Stewardship Organizations (SSOs)
DOE Office of Advanced Scientific Computing Research (ASCR) Post-ECP Projects

COLABS

Training, workforce
development, and building

the RSE community

CORSA

Partnering with
foundations to provide

sustainable pathways for
scientific software

FASTMATH

Stewardship,
advancement, and

integration for math and
ML/AI packages

PESO

Stewarding, evolving and
integrating a cohesive

ecosystem for DOE
software

RAPIDS

Stewardship,
advancement, and

integration for data and
viz packages

S4PST

Stewardship,
advancement and
engagement for

programming systems

STEP

Stewardship,
advancement of software
tools for understanding

performance and behavior

SWAS

Stewardship and project
support for scientific

workflow software and its
community

I/O LIBRARY
CHALLENGES AND
OPPORTUNITES

11 JUNE 2024

ROB LATHAM

Research Software Developer
Math and Computer Science
Division

WEI-KENG LIAO

Research Professor
Northwestern University

SCOT BREITENFELD

HPC Lead
HDF Group

YOUR PANELISTS

Rob Latham

- I/O libraries

- Applications

- Tutorials

Wei-keng Liao

- Parallel-NetCDF

- ROMIO

- HDF VOL

Scot Breitenfeld

- HDF5

- HPC

- CGNS

CHALLENGE: “EVERYTHING IS BIGGER”

▪ MPI-4 introduced “large count”

methods

▪ Passing more than 2 billion

items into ROMIO caused

problems

— Fixed integer overflows in

next MPICH release

— Are ROMIO’s algorithms

ready for billions of items?

size_t count = 1024*1024*1024;

double *buffer;

buffer = malloc(count);

/* 8 GiB transfer: 'count' fits in int */

CHECK(MPI_File_write_at_all(fh, count*rank,

 buffer, count, MPI_DOUBLE, &status));

/* still 8 GiB transfer, but requires a 64-bit MPI_Count */

CHECK(MPI_File_write_at_all_c(fh, count*rank,

 buffer, count*sizeof(double), MPI_BYTE, &status))

We fixed all the “large transfer” overflows

years ago (1); “large count” (2) took a bit

more work.

1

2

OPPORTUNITY: DAOS

▪ DAOS (https://daos.io/) is finally here

▪ Tuning

— Concurrency, block sizes, transfer sizes

▪ Better interfaces

— “scatter-gather”

— “relaxed mode” consistency semantics

— (Feels a lot like the old “PVFS”

approaches)
This work was done on a pre-production
supercomputer with early versions of the
Aurora software development kit.

https://daos.io/

I/O Request Aggregation

Wei-Keng Liao, ECE Department, Northwestern University

Session: Near-term Challenges and Opportunities for I/O

2024 CASS Community BOF Days, June 11, 2024

High-level I/O libraries

• Application users are moving away from using MPI-IO directly
• MPI-IO programming deals with file offsets

• High-level I/O libraries
• PnetCDF and HDF5

• It is easier to deal with logical data structures, e.g. sub-arrays

• Self-describing, metadata-rich, portable file format

• Built on top of MPI-IO

• PIO @NCAR — I/O libraries built on top of PnetCDF, HDF5, NetCDF4

Common practices used in applications

• Computation phase and I/O phase
• Most applications run a loop of computation and periodically save the

intermediate results to files, often referred to as checkpointing.
• There are often multiple variables to be saved.
• The same memory buffers may be used for computation and I/O.
• Asynchronous I/O to overlap the two phases: improves the speed but

requires double buffer size.

• User intent for the I/O phase
• To ensure all variables are safely stored in the file system, before returning to

the computation phase.
• Such intent can be better realized by high-level libraries (requestion

aggregation feature in PnetCDF, HDF5, and PIO)

Example applications

• E3SM F case
• Simulates atmospheric components.
• 414 variables, 387 are partitioned and 27 are not.
• 3 data partitioning patterns, along longitude and latitude dimensions, based

on the Hilbert space curve algorithm.
• Each process writes to a large number of non-contiguous file regions (~184K)

• WRF CONUS 2.5km
• Widely used for weather forecasting and climate research
• 202 variables, 147 are partitioned and 55 are not.
• A 2D checker-board partitioning pattern
• Each process writes to a rectangle subarray per variable

Implementation of I/O request aggregation

• PnetCDF
• Nonblocking APIs allow users to post multiple requests to the same or

different variables

• A wait_all call to flushed out all pending requests using a single MPI-IO call

• HDF5 multi-dataset APIs
• H5Dwrite_multi — allows a single call to write multiple variables

• PIO
• Two aggregation options: subset and box rearrangers

• A subset of processes are selected to aggregate date from all processes

0

1

2

3

4

5

6

256 512 1024 2048 4096

W
ri

te
 b

a
n

d
w

id
th

 i
n

 G
iB

/s
e

c
o

n
d

Number of MPI Processes

WRF on Perlmutter @NERSC

aggregation

no aggregation

*Non-aggregation did not complete in a reasonable time.

0

200

400

600

800

1000

1200

F case
np=21600

G case
np=9600

I case
np=1344

W
ri

te
 b

an
d

w
id

th
 in

 M
B

/s
e

c
E3SM I/O on Perlmutter @NERSC

PnetCDF

Challenge for ROMIO — large requests

• Request aggregation increases I/O amount per MPI-IO call
• Larger requests per MPI process (local aggregation)

• Larger aggregated amount at each I/O aggregator (at high-level libraries)

• Need large-request support from MPI-IO
• See Rob Latham’s slides

Challenge for ROMIO — memory footprint

• Aggregation increases memory footprints
• Fileview is flattened into offset-length pairs

• User buffer datatype is flattened into offset-length pairs

• Internal memory space required to store these pairs can become significant

• Need a new datatype flattening mechanism
• MPI collective requests are carried out in multiple rounds of two-phase I/O

• Each round processes requests of size <= cb_buffer_size

• Reducing memory footprint by flattening on the fly in each round

Challenge for ROMIO — data sieving

• Data sieving can become expensive
• I/O aggregator checks “holes” within its file domain from the offset-length

pairs received from non-aggregators

• If holes are found, read-modify-write will perform

• Sorting and merging offset-length pairs can be expensive, i.e. more than
reading the file domain

• Need a threshold for triggering data sieving

17

Data Aggregation Challenges and Benefits

• Benefits (usually are large node counts)
• Better use of parallel I/O subsystems, such as node-local storage

• Reduces the complexity of file-per-process

• By leveraging parallel I/O subsystems, we can effectively mitigate locking and contention issues,
leading to substantial performance enhancements, especially at larger processor counts
compared to a single-file approach

• It should be relatively easy for applications to use

• Challenges
• It may still be burdensome working with many subfiles

• Do the readers understand the data layout and organization

• May need to combine the files into a valid format
• can be expensive and negate any benefits from aggregation

• Hiding data processing during computation to avoid with-out impacting compute performance

• Unknown at what node count does aggregation start to benefit

18

Subfiling VFD

a. I/O Concentrators are implemented as

independent threads attached to a normal

HDF5 process.

b. MPI is utilized for communicating between

HDF5 processes and the set of I/O

Concentrators.

c. Because of (b), applications need to use

MPI_Init_thread to initialize the MPI library.

The resulting subfiles can be read using the

Subfiling VFD or coalesced via a post-processing

step into a single HDF5 file

• HDF5’s h5fuse is a tool to recombine subfiles

into a single HDF5 file

19

Challenges of data aggregation and
node-local storage

 90

 92

 94

 96

 98

 100

 102

 104

Sin
gl

e s
ha

re
d
fi
le

(L
us

tre
)

no
de

-lo
ca

l

(n
o

h5
fu

se
)

no
de

-lo
ca

l

(h
5f

us
e t

o
Lus

tre
)

Lus
tre

(h
5f

us
e t

o
Lus

tre
)

T
ᴏ

ᴛ
ᴀ

ʟ
 S

ɪᴍ
ᴜ

ʟ
ᴀ

ᴛ
ɪᴏ

ɴ
 T

ɪᴍ
ᴇ

 (
ꜱ

)

• Cabana/ExaMPM
• Outputs data every

100 timesteps (5 total)
• Frontier, 256 nodes

	Slide 1: CASS Community BOF Days
	Slide 2: Announcing CASS The Consortium for the Advancement of Scientific Software
	Slide 3: 8 Software Stewardship Organizations (SSOs) DOE Office of Advanced Scientific Computing Research (ASCR) Post-ECP Projects
	Slide 4: I/O library challenges and opportunites
	Slide 5: Your panelists
	Slide 6: Challenge: “everything is bigger”
	Slide 7: Opportunity: DAOS
	Slide 8: I/O Request Aggregation
	Slide 9: High-level I/O libraries
	Slide 10: Common practices used in applications
	Slide 11: Example applications
	Slide 12: Implementation of I/O request aggregation
	Slide 13
	Slide 14: Challenge for ROMIO — large requests
	Slide 15: Challenge for ROMIO — memory footprint
	Slide 16: Challenge for ROMIO — data sieving
	Slide 17: Data Aggregation Challenges and Benefits
	Slide 18: Subfiling VFD
	Slide 19: Challenges of data aggregation and node-local storage

